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Abstract. We propose an effective Lorentz-violating electrodynamics model via the static de Sitter met-
ric, which is deviated from the Minkowski metric by a minuscule amount depending on the cosmological
constant. We obtain the electromagnetic field equations via the vierbein decomposition of the tensors. In
addition, as an application of the electromagnetic field equations obtained, we derive the solutions of the
electrostatic field and the magnetostatic field due to a point charge and a circle current, respectively, and
discuss the implication of the effect of Lorentz violation in our electromagnetic theory.
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Lorentz invariance is one of the greatest discoveries in the
history of physics and has been confirmed to ever greater
precision. Most of the evidence comes from short distance
tests.However, there aremany signs that something strange
may happen at a large distance (for example, dark en-
ergy), where the constraints onLorentz symmetry aremuch
weaker. It is reasonable thatmany researchers are interested
in Lorentz violation (LV) fromvarious points of views [1–5].
Researchers have pointed out that Lorentz invariance can
be viewed as a low energy effective invariance. Remarkably,
under suitable circumstances, some experimental informa-
tion about quantum gravity can nonetheless be obtained.
The point is that minuscule effects emerging from the un-
derlying quantum gravity might be detected in sufficiently
sensitive experiments. To be identified as definitive signals
at the Planck scale, such effects would need to violate some
established principles of low-energy physics. One promis-
ing class of potential effects is relativity violations, arising
frombreaking theLorentz symmetry that lies at the heart of
relativity. Recent proposals suggest LV effects may emerge
from strings, loop quantum gravity, noncommutative field
theories, or numerous other sources at the Planck scale [8].
On the other hand, recent observations, such as the lumi-
nosity observations of the farthest supernovas [9], show that
our universe is accelerated expanding and probably asymp-
totically de Sitter with a positive cosmological constant
Λ [10–12].
Among the developments on LV research is a system-

atic extension of the standard model of particle physics
incorporating all possible LV in the renormalizable sec-
tor, called the standardmodel extension (SME), developed
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by Colladay and Kostelecký [6, 13]. This model has pro-
vided a framework for computing in effective field theory
the observable consequences for many experiments and has
led to much experimental work setting limits on the LV
parameters in the Lagrangian [14]. The action of SME in-
corporates the standardmodel (SM) of particle physics, in-
cluding gravitational couplings and a purely gravitational
sector. The action of the effective theory is expected to
contain the usual minimal gravitational coupling and the
Einstein–Hilbert action among its terms. The photon sec-
tor of the QED extension in the SME framework is charac-
terized by the LV coefficients CPT even kF , CPT odd kAF
and kA.
We limit our attention in the present work to the sec-

tor of classical Lorentz-violating electrodynamics, coupled
to an arbitrary 4-current source. Due to the presence of
dark energy or the nonzero positive cosmological constant,
the spacetime without any matter is de Sitter rather than
Minkowskian and so it is natural to substitute the Lorentz
invariant low energy effective theory with its covariant
formulation in de Sitter spacetime for a field theory in
Minkowski spacetime. We set up the model as the electro-
magnetic field theory in de Sitter spacetime and take the
vierbein or the local Lorentz frame formalism of the theory
as its Minkowski spacetime limit. The Lorentz invariance is
violated obviously in this way to the observer in Minkowski
spacetime. We mean in this approach that the Lorentz
symmetry is an approximate symmetry of the low energy
effective theory. There are different types of metrics for de
Sitter spacetime and it is well-known that quantum field
theory in de Sitter spacetime equipped with the static met-
ric is a finite temperature field theory in a pure field theory
in the curved spacetime approach [15]. However, we inves-
tigate the Lorentz-violating electrodynamics in Minkowski
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spacetime limit in the present work and thus there is no
finite temperature problem here. In this way, different
choices of de Sitter metrics to formulate the Lorentz violat-
ing theory just follow different scenarios to violate Lorentz
symmetry. In this paper, we propose a scenario that the
substitute of Lorentz invariant electromagnetic theory is
its formulation in de Sitter spacetime equipped with the
static metric, which is obviously Lorentz-violating. We de-
fine all the observables in Minkowski spacetime as the cor-
responding vierbein decomposition components in de Sit-
ter spacetime of corresponding physical quantities.
We borrow some ideas from SME here. However, our

approach is a little different from the SME of Kostelecký
et. al. In the SME approach, the LV part of the Minkowski
spacetime limit of the electrodynamics formulation is a low
energy effective Lagrangian consisting of CPT even kF ,
CPT odd kAF and kA terms phenomenologically, which
may originate from Riemann–Cartan gravitational coup-
ling in the matter and gauge sectors.We stress the fact that
the spacetime of our universe is asymptotic de Sitter and
hence the low energy effective field theory should be one
in de Sitter spacetime, which is deviated from field theory
in Minkowski spacetime. The Lorentz violation arises nat-
urally for the observer in the local Lorentz frame when he
thinks he was in Minkowski spacetime. This means that
we only investigate the Lorentz violation originating from
dark energy or the cosmological constant in the present
work.
First, we introduce the de Sitter space and its met-

ric. de Sitter space can be regarded as a 4D hyperboloid
SR embedded in a 5D Minkowski space with ηAB =
diag(1,−1,−1,−1,−1),

SR : ηABξ
AξB =−R2,

ds2 = ηABdξ
AdξB , (1)

where A,B = 0, ..., 4. Clearly, (1) is invariant under de Sit-
ter group SO(1, 4). The metric of this spacetime can be
written as [16]

ds2 = ηµνdξ
µdξν −

(ηµνξ
µdξν)

2

1+K (ηµνξµξν)
, (2)

where µ, ν = 0, ..., 3, K = 1
R2
= Λ
3 ,and Λ is the cosmolog-

ical constant. This metric is invariant under two classes
of simple transformations (see, for example, p. 387 of the
book [16]): (i) SO(1, 3) transformations:

ξ
′µ = Lµνξ

ν (3)

and (ii) ”quasitranslations”, with

ξ
′µ = ξµ+aµ

[
(1−Kηρσξ

ρξσ)
1/2− bKηρσξ

ρaσ
]
(4)

b=
1− (1−Kηρσaρaσ)

1/2

Kηρσaρaσ
.

In particular, these transformations take the origin ξµ = 0
into any aµ. For the metric given by (2), we can introduce

coordinates in which the metric appears time-independent
by

xi = ξi = x′i exp
(
K1/2t′

)
, (5)

ξ0 =
1
√
K

[
Kx′2

2
cosh

(
K1/2t′

)

+

(
1+
Kx′2

2

)
sinh
(
K1/2t′

)]
,

t= t′−
1

2K1/2
ln
[
1−Kx’2 exp(2K1/2t′)

]
.

Then (2) becomes

ds2 =
(
1−Kx2

)
dt2−dx2−

K (x ·dx)2

1−Kx2
. (6)

One can find that the spatial metric of the spacetime is
just the metric of a 3D spherical surface (with radius R) in
4D Euclidean space. However, unlike the metric given by
(2), this static de Sitter metric is obviously Lorentz violat-
ing. Noting that the transformation (4) and (5) leaving the
metric (6) invariant, can also take the spatial origin x= 0
into any a while keeping t unchanged and contain the spa-
tial SO(3) rotation. Choosing the spherical coordinate, we
can rewrite the static metric (6) as follows:

ds2 = σdt2−
1

σ
dr2− r2dθ2− r2 sin θ2dφ2 . (7)

Thus we can define a local Lorentz frame with vierbeins
ϑaµ, a= 0, 1, 2, 3, where

ϑaµ = diag

(
√
σ,
1
√
σ
, r, r sin θ

)
. (8)

We now set up the LV electrodynamics by the vierbein for-
malism. A basic object in the formalism is the vierbeins
ϑaµ, which can be viewed as providing at each point on the
spacetime manifold a link between the covariant compo-
nents Tλµν... of a tensor field in a coordinate basis and the
corresponding covariant components Tabc... of the tensor
field in a local Lorentz frame. The link is given by

Tλµν... = ϑ
a
λϑ
b
µϑ
a
ν . . . Tabc... (9)

In the coordinate basis, the components of the space-
time metric are denoted gµν . In the local Lorentz frame,
the metric components take the Minkowski form ηab =
diag(1,−1,−1,−1). As in general relativity, the observ-
ables are vectors and tensors in the local Lorentz frame.
Here we define the observables in Minkowski spacetime as
the vierbein decomposition components of the correspond-
ing tensors of physical quantities in de Sitter spacetime. In
the present work, we are concerned with the observables of
the electromagnetic field, the electric field strength E and
the magnetic field strengthB.
First, we introduce the electromagnetic potential con-

travariant vector

Aµ = eµaA
a =

(
1
√
σ
ϕ,
√
σAr,

1

r
Aθ,

1

r sin θ
Aφ

)
, (10)
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where

eµa = ηabg
µνϑbν = diag

(
1
√
σ
,
√
σ,
1

r
,
1

r sin θ

)
,

Aa = (ϕ,Ar, Aθ, Aφ)

and Aa are components of the ‘ordinary’ vector [16] that
is that we are seeking for, i.e. the observable vector. Thus
the covariant 1-form can be written as below (we define
xµ = (t, r, θ, φ) hereafter),

A=Aµdx
µ =
√
σϕdt−

1
√
σ
Ardr− rAθdθ− r sin θAφdφ .

(11)

Then, we can introduce the electromagnetic field strength
covariant 2-form F = dA = 1

2Fµνdx
µ∧dxν . Accordingly,

here Fab are components of the ‘ordinary’ electromagnetic
field strength tensor and they can be written down as
a matrix:

Fab =

⎛
⎜⎜⎜⎝

0 −Er −Eθ −Eφ
Er 0 Bφ −Bθ
Eθ −Bφ 0 Br

Eφ Bθ −Br 0

⎞
⎟⎟⎟⎠ . (12)

Then Fµν becomes

Fµν =⎛
⎜⎜⎜⎝

0 −Er −r
√
σEθ −r sin θ

√
σEφ

Er 0 r√
σ
Bφ − r sin θ√

σ
Bθ

r
√
σEθ − r√

σ
Bφ 0 r2 sin θBr

r sin θ
√
σEφ

r sin θ√
σ
Bθ −r2 sin θBr 0

⎞
⎟⎟⎟⎠ .

(13)

The action of the electromagnetic field can be written as

IM =

∫
(−F ∧∗F −A∧∗j) . (14)

Here, the symbol ‘∗’ is the Hodge-dual operator.
To make a comparison with the photon sector of the

minimal SME, we can separate the Lagrangian of the
electromagnetic field in de Sitter spacetime into one in
Minkowski spacetime and a Lorentz violating term as
in [7],

L=−
1

4
FµνF

µν − jµAµ

=−
1

8
(gµκgνλ− gµλgνκ)F

κλFµν − jµAµ

=−
1

8K
RκλµνF

κλFµν − jµAµ

=−
1

8K
ηκλµνF

κλFµν −
1

8K
(Rκλµν −ηκλµν)F

κλFµν

− jµAµ , (15)

where ηκλµν = 2K(ηµκηνλ−ηµληνκ). Comparing with the
SME theory, one can obtain an analogous LV coefficient
(kF )κλµν as [7]:

(kF )κλµν =
1

2K
(Rκλµν −ηκλµν) . (16)

One useful set is given by [1],

(
D

H

)
=

(
1+κDE κDB

κHE 1+κHB

)(
E
B

)
,

where

(κDE)
jk =−2 (kF )

0j0k
, (κHB)

jk
=
1

2
εjpqεkrs (kF )

pqrs
,

(κDB)
jk
=− (κHE)

jk
= εkpqεkrs (kF )

0jpq
. (17)

With some simple calculations, one finds that (κDB)
jk =

−(κHE)jk = 0. This means that there is no mixing between
the electric sector and the magnetic sector in our model.
The other two coefficients κDE and κHB are not a constant
matrix because our model is formulated in curved space-
time and the separation is only valid in the neighborhood
of a spacetime point. They appear as:

κHB =−σκDE

=K

⎛
⎜⎝
(x2)2+(x3)2 −x1x2 −x1x3

−x1x2 (x1)2+(x3)2 −x2x3

−x1x3 −x2x3 (x1)2+(x2)2

⎞
⎟⎠ ,

(18)

where σ = 1−Kr2. The most stringent experimental tests
on the photon sector of SME comes from the astrophysical
test [1]. Following the notation introduced in [1], one can
define

(κ̃e+)
jk
=
1

2
(κDE+κHB)

jk
,

(κ̃e−)
jk
=
1

2
(κDE−κHB)

jk−
1

3
δjk(κDE)

ll ,

(κ̃o+)
jk
=
1

2
(κDB+κHE)

jk
,

(κ̃o−)
jk =

1

2
(κDB−κHE)

jk
,

ka =
(
(kF )

0213, (kF )
0123,

(kF )
0202− (kF )

1313, (kF )
0303− (kF )

1212,

(kF )
0102+(kF )

1323, (kF )
0103− (kF )

1223,

(kF )
0203+(kF )

1213, (kF )
0112+(kF )

0323,

(kF )
0113− (kF )

0223, (kF )
0212− (kF )

0313
)
,
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and

(κ̃e+)
jk =−

⎛
⎝
−(k3+k4) k5 k6

.[3pt]k5 k3 k7

k6 k7 k4

⎞
⎠ ,

(κ̃o−)
jk
=

⎛
⎜⎝
2k2 −k9 k8

−k9 −2k1 k10

k8 k10 2(k1−k2)

⎞
⎟⎠ .

The most stringent astrophysical tests yield a bound of
|ka|< 2×10−32 in [1].
In our model (κ̃o−)

jk = 1
2 (κDB−κHE)

jk vanish auto-

matically, while κ̃e+ =
1
2 (κDE +κHB) =

1
2kr

2κDE , which
appears to grow with r and tends to infinity as r ap-
proaches the horizon. Since the deviation of de Sitter in-
variant electrodynamics from Maxwell theory should be
minuscule as expected, is this a sign of failure of our model?
The answer is no, because we formulate the electromag-
netic theory in de Sitter spacetime and the above compar-
ison of our model with minimal SME proceeds and only
makes sense in a neighborhood of a spacetime point. The
deviation is reasonably large when large scale effects en-
ter. On the other hand, κDE and κHB are not a constant
matrix, so there is no conventional plane wave solution in
our model. The polarization analysis in [1] is invalid here.
As a matter of fact, the electrostatic and magnetostatic so-
lutions in our model show that the photon in our model
possesses a small mass and it can be estimated that its
magnitude is much below the experimental limit obtained
in [17].
As with the familiar formulae for gradient, curl, and

divergence in the classical curvilinear coordinate systems,
we now introduce these things in the spatial part of the
local Lorentz frame, or accurately, on the submanifold S3

of static de Sitter spacetime manifold, by

∼
∇ ψ = d

′ψ =
√
σψ, rϑ

1+
1

r
ψ, θϑ

2+
1

r sin θ
ψ, φϑ

3 ,

(19)

∼
∇ ·f = ∗′d

′ ∗′ f

=
2

r

√
σfr+

√
σfr, r+

cos θ

r sin θ
fθ+

1

r
fθ, θ

+
1

r sin θ
fφ, φ , (20)

∼
∇×f = ∗′d

′f =

(
cos θ

r sin θ
fφ+

1

r
fφ, θ−

1

r sin θ
fθ, φ

)
ϑ1

+

(
1

r sin θ
fr, φ−

√
σfφ, r−

√
σ

r
fφ

)
ϑ2

+

(√
σ

r
fθ+

√
σfθ, r−

1

r
fr, θ

)
ϑ3 , (21)

∼
∇
2

ψ = (d′δ′+ δ′d′)ψ

=

√
σ

r2
∂

∂r

(
r2
√
σψ, r

)
+

1

r2 sin θ

∂

∂θ
(sin θψ, θ)

+
1

r2 sin2 θ

∂2ψ

∂φ2
, (22)

where f is an ‘ordinary’ 3D vector on S3 and f = frϑ
1+

fθϑ
2+fφϑ

3 = (fr, fθ, fφ). The vector components on inde-
pendent basis ϑi = ϑiµdx

µ, i= 1, 2, 3 point out the orienta-
tion of a 3D vector in the local Lorentz frame. We use the
symbols tilde and prime to indicate that we do these things
on the submanifold S3.
Noticing that (11)–(13) build a bridge fromAa toE and

B, we can write down these relational equations to show
clearly, by performing some elementary calculations, that

E=−
1
√
σ

∼
∇ (
√
σϕ)−

1
√
σ

∂A

∂t
(23)

and

B=
∼
∇×A , (24)

where A = (Ar, Aθ, Aφ), E = (Er, Eθ, Eφ) and B = (Br,
Bθ, Bφ), respectively.
Noticing that F = dA is an exact 2-form, we can im-

mediately obtain the Bianchi identity dF = d2A ≡ 0 and
the dynamical equation δF = ∗d∗F = j = jµdxµ, where we
define

jµ = ϑµaj
a =

(
1
√
σ
ρ,
√
σjr,

1

r
jθ,

1

r sin θ
jφ

)
, (25)

with ja = (ρ, jr, jθ, jφ). The ‘ordinary’ electric current
density can be defined as before j = (jr, jθ, jφ). Then the
electromagnetic field equations in static de Sitter space-
time are easy to obtain as bellow

∼
∇ ·B= 0 (26)

∼
∇×(

√
σE)+

∂B

∂t
= 0 (27)

∼
∇ ·E= ρ (28)

∼
∇×B−

1
√
σ

∂E

∂t
= j . (29)

In addition, we study the covariant gauge condition of the
electromagnetic field in static de Sitter spacetime. In static
de Sitter spacetime, the reasonable gauge condition is the
de Sitter covariant gauge condition δA = 0. In the local
Lorentz frame, one can write this equation as follows:

∼
∇ ·(
√
σA)+

∂ϕ

∂t
= 0 . (30)

This de Sitter gauge will play an important role in dealing
with the magnetostatic field.
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Now we would like to investigate the interaction be-
tween the electromagnetic field and a charged source jµ in
static de Sitter spacetime. As in Lorentz invariant electro-
dynamics, the Lagrange density of the system reads

LM = LE+L
′
M =−

1

4
FµνFµν − jµA

µ . (31)

Here LE =−
1
4F
µνFµν is the purely electromagnetic term

and LM describes the charged particles (with charge e)
and their electromagnetic interactions. Then the electro-
magnetic force fµ(x) can be obtained as

fµ = Fµγj
γ =

(
e
v ·E
√
σ
,
√
σfr,

1

r
fθ,

1

r sin θ
fφ

)
, (32)

with

f = (fr, fθ, fφ) = e(E+v×B) .

If K → 0, the LV electrodynamics tends to the Lorentz in-
variant one and the force returns to the Lorentz force. If
we define the purely electromagnetic term of the energy-
momentum tensor as usual,

Tαβem ≡ F
α
γF
αβ−

1

4
gαβFλδF

λδ , (33)

we can obtain the energy-momentum conservation law for
LV electrodynamics.

Tαβem ; β =−F
α
βj
β =−fα . (34)

The semicolon is the abbreviation for the covariant deriva-
tive. To make this tensor equation familiar to us and for
it to have an obviously observable meaning, we should
rewrite the equation using the vierbein formalism as

1
√
σ

∼
∇ ·S+

1
√
σ

∂ω

∂t
=−j ·E , (35)

S= σ (E×B) , ω =
1

2

(
E2+B2

)
,

∼
∇ ·

⇀⇀

J +
1
√
σ

∂g

∂t
−K (r×E×E) =−f , (36)

and

⇀⇀

J =−EE−BB+
1

2

⇀⇀

I
(
E2+B2

)
,g=E×B ,

where S, ω,
⇀⇀

J , and g are the energy flux density (Poynt-
ing vector), the energy density the electromagnetic stress
tensor and the momentum density of the system, respec-

tively.
⇀⇀

I is the unit tensor in S3. Equations* (35) and
(36) are the vierbein formalism of energy-momentum con-
servation law of the LV electrodynamics. One can observe
again that these equations are different from their cousins
in Lorentz invariant formalism.
As an application of the electromagnetic field equations

in static de Sitter spacetime, we now introduce the electro-
static field due to a point charged particle. Let us pay some

attention to a point charge (with charge q) at the point
r0 = (r0, θ0, φ0). One may ask the question: how can one
define a real point charge in the local frame? The answer
is connected with the current conservation law in static de
Sitter spacetime, that is δj = 0. Using the vierbein formal-
ism, this conservation law can be written as

∼
∇ ·(
√
σj)+

∂ρ

∂t
= 0 . (37)

Rewriting this equation in the form of spherical coordi-
nates, it reads

∇·
∼
j +

1
√
σ

∂ρ

∂t
= 0 , (38)

where
∼
j = (

√
σjr, jθ, jφ). The delta function at the point r0

in S3 can be written as δ′ 3(r− r0) =
√
σδ3(r− r0), so now

we can define the charge distribution function of a point
charge as ρ = qδ′ 3(r− r0). Using the field equations ob-
tained above, the electrostatic field equation becomes

−
∼
∇ ·

(
1
√
σ

∼
∇ (
√
σϕ)

)
= qδ′ 3(r− r0) . (39)

Utilizing the spherical coordinates, we can transform the
equation to appear in the formalism familiar to us

−∇2ϕ+K
∂

∂r

(
r2
∂ϕ

∂r

)
+3Kϕ+2Kr

∂ϕ

∂r
+
K2r2

σ

= qδ′ 3(r− r0) . (40)

However, this equation is not easy to solve. Fortunately,
there is a way to round this difficulty, because the equation
above is de Sitter invariant, so one can perform a suitable
‘quasitranslation’ in static de Sitter spacetime to take the
spatial origin x= 0 into any a. Then we can always choose
the observed point as the origin of the local frame, namely
let r→ 0 in (40). We then arrive at

−∇2ϕ+3Kϕ= qδ3(r− r0) . (41)

This equation is very easy to solve by choosing the reason-
able boundary condition that ϕ→ 0 as r0→∞ (of course,
in de Sitter space there is a horizon such that r0 cannot re-
ally go to ∞. However, since the horizon radius R is very
large, one can take the horizon as∞.). We obtain

ϕ=
q

4πr0
e−
√
3K r0 . (42)

This electric potential damps a little faster than in Lorentz
invariant electrodynamics. The electric field strength E at
the observed point is

E=−q
r0
4πr30

e−
√
3K r0 + q

√
3Kr0
4πr20

e−
√
3K r0 . (43)

This formalism is obviously different from the Coulomb
theorem. Although the modification is very small, the elec-
trostatic field strength of a point charge in our LV elec-
trodynamics model does not exactly decay as r−2. There
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is an another exponential damping factor in the potential,
which makes the potential looks like a Yukawa one. This ef-
fect becomes important in the far field region and it may
affect the large-scale universal observation. However, since
K = 1

R2
= Λ
3 and R could be a very large distance param-

eter, say the ‘radius of universe horizon’, the effect of the
exponential damping factor can be negligible in the exist-
ing experiments.
Next we turn to focus our attention on magnetostatic

field in static de Sitter spacetime. The simplest and also
the most fundamental case is the magnetic field of a small
circle electric current. We set the center of the small circle
current (with the electric current strength I and the ra-
dius a) at the point r0, and the observer is at the origin,
as in the case of the electrostatic field mentioned above.
This case, however, is a little different from the electro-
static field, because the gauge condition we are apt to select
is the de Sitter gauge condition (30). Using this gauge con-
dition, one can arrive at

∼
∇ ·A=

K
√
σ
r ·A . (44)

According to the electromagnetic field equations in static
de Sitter spacetime, the differential equation of A can be
written as

∼
∇×(

∼
∇×A) =

∼
j (r) , (45)

here from (38)

∼
j (r) =

√
σj(r), j(r) = jrϑ

1+ jθϑ
2+ jφϑ

3 (46)

is the conserved electric current in the local frame. How-
ever, under this formalism, we do not know how to solve
it. Thus we should rewrite this equation in spherical
coordinates, as we did in the case of the electrostatic
field of a point charge. To do this, one should look back
at the essential meaning of an ‘ordinary’ 3D vector in
a local frame, actually, a vector in S3 space f = frϑ

1+
fθϑ

2+fφϑ
3 correspond to a vector in 3D Euclidean space

f = 1√
σ
frer+fθeθ+fφeφ. With this correspondence and

defining A′(r) = 1√
σ
Arer+Aθeθ+Aφeφ, one can obtain

the spherical coordinate formalism of the gauge condition
(44),

∇·A′ = 4KrA′r+Kr
2A′r, r . (47)

Then the equations of the components ofA′ can be derived
directly from (45)

− (∇2A′)r+4KA
′
r+6KrA

′
r, r+Kr

2A′r, r ,r =
1
√
σ
jr

(48)

−
(
∇2A′

)
θ
+

[
K
(
r (rA′θ), r

)
, r
+3KA′r, θ

]
= jθ (49)

− (∇2A′)φ+

[
K
(
r
(
rA′φ
)
, r

)
, r
+
3

sin θ
KA′r, φ

]
= jφ .

(50)

Here, however, we have no reason to say that the vec-
tor ( 1√

σ
jr, jθ, jφ) is just a conservation current density in

spherical coordinates. Actually, in static de Sitter space-
time, the conservation current density vector must be de-
fined from the (38). Therefore, we can obtain the current
strength I through a certain cross section S′ in spherical
coordinates

I =

∫
(
√
σj) ·dS′

=

∫
√
σjrrdθ

′∧ r′ sin θ′dφ′

+

∫
jθdr

′∧ r′ sin θ′dφ′+

∫
jϕdr

′ ∧ r′dθ′. (51)

So the conservation current density vector in spherical
coordinates is j′′(r) =

√
σjrer+ jθeθ+ jφeφ. Under this

definition, (48) should be multiplied a factor σ. In the
limit of r→ 0, one can prove that a symmetric solution
of (48)–(50) is a solution of a vector equation as fol-
lows. It is easy to show that the solution of (48)–(50) can
be obtained by the Bio–Savart theorem for a small cir-
cle current placed at the origin in usual Lorentz invari-
ant electrodynamics by setting K to 0. Then pulling the
source to r0, one can obtain A

′
r, A

′
θ, A

′
φ with this solu-

tion. Supposing that the solution in the spherical frame
with origin at the center of the circle is A′r′ , A

′
θ′ , A

′
φ′ ,

it is easy to show that the only non-vanishing compon-
ent isA′φ′ andA

′(0) =A′φ′eφ′ =−A
′
φ′ sin θ sin (φ−φ0)er−

A′φ′ cos θ sin (φ−φ0)eθ−A
′
φ′ cos (φ−φ0)eφ, where (r0, θ0,

φ0) is the spherical coordinates of r0. Substituting this so-
lution to K terms in (48)–(50) and noting that σ→ 1 as
r→ 0, one can obtain the vector equation as follows:

−∇2A′(r)+4KA′(r) = j′(r) . (52)

This equation is invariant under a translation in parame-
ter x space, so we can build a spherical coordinate frame
(r′, θ′, φ′) with origin at the point r0. It is easy to show
that the only non-vanishing component of the solution is
still A′φ′ and A

′(0) = A′φ′eφ′ = −A
′
φ′ sin θ sin (φ−φ0)er−

A′φ′ cos θ sin (φ−φ0)eθ −A
′
φ′ cos (φ−φ0)eφ also holds,

where

A′ =A′φ′eφ′ =
Ia

4π

∮ 2π
0

cosϕdϕ√
r20+a

2−2r0a sin θ′ cosϕ

× e−
√
4K
√
r20+a

2−2r0a sin θ′ cosϕeφ′ .

(53)

In the case 2r0a sin θ
′ � r20 +a

2, namely in the far field
region (r0	 a), and r0 sin θ′� a, the so-called region of
adaxial field, the above integral can be approximatively
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calculated to 3-order

A′φ′

=
Ia

4π

∫
dϕ cosϕ

[
P
r0a sin θ

′ cosϕ

(r20+a
2)
3/2

+N
r30a

3 sin3 θ′ cos3 ϕ

(r20+a
2)
7/2

]

=
Ia

4π

[
P
r0a sin θ

′

(r20+a
2)
3/2
+
3

4
N
r30a

3 sin3 θ′

(r20+a
2)
7/2

]
, (54)

where

P =
e
−
√
4K(r20+a2)

2

(
1+
√
4K (r20+a

2)

)

and

N =
e
−
√
4K(r20+a2)

48

{
15+15

√
4K (r20+a

2)

+ 24K
(
r20+a

2
)
+

[√
4K (r20+a

2)

]3}
.

Pulling the origin back to the field point by setting θ′ = π−
θ0, φ

′ = φ0−π, the magnetic potentialA (at the origin) of
the circle electric current can be written as

A(0) =A′(0) =A′rer+A
′
θeθ+A

′
φeφ

=−A′φ′ sin θ sin (φ−φ0)er

−A′φ′ cos θ sin (φ−φ0)eθ−A
′
φ′ cos (φ−φ0)eφ .

(55)

This solution shows that the vector potential of the cir-
cle current is also a damping potential; it decays a little
faster than that in Lorentz invariant electrodynamics as in
the case of electrostatic field of a point charge mentioned
above. Thus it is reasonable to say that the magnetic field
strength also has a damping factor. In the far field re-
gion this damping cannot be ignored. In this LV electrody-
namics approach, at least on very large-scale observation,
the LV effect becomes important and the observation data
should be reconsidered because of the damping factor.
We should note that the equations (41) for the scalar

potential ϕ and (52) for vector potential A are similar
to the corresponding equations obtained from Maxwell–
Proca equations [17]. The exponential damping factors in
the electrostatic and magnetostatic solutions reveal the ef-
fect of the effective mass of the photon. However, the effect-
ive photon masses for scalar potential ϕ and vector poten-

tialA are different in our case. With
mγc

h̄ ∼
√
K ∼

√
Λ, one

can easily get its approximate magnitude asmγ ∼ 10−64g,

which is far below the photonmass limitmγ < 1.2×10−51g
obtained in [17].
In conclusion, we set up an effective low energy LV clas-

sical electrodynamics model in Minkowski spacetime by
the covariant formulation of electrodynamics in static de
Sitter spacetime. We defined the observable in the model
as the vierbein decomposition components of physical ten-
sors. The electromagnetic field equations are obtained in

this formalism and their deviation from the Lorentz in-
variant theory is given. Furthermore, we investigated the
energy-momentum conservation law in this LV model. As
an application of the LV electromagnetic equations, we
studied two basic and simple cases that might be responsi-
ble for possible observation confirmation: the electrostatic
field of a point charge and the magnetostatic field of a cir-
cle electric current. We found that in both cases there is an
analogous damping factor in the potential function. This
can be regarded as an LV effect and may be important in
large-scale observations.
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